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Preface

This report documents the theory behind the CSM Testbed structural finite element pro-
cessor ES5 for the STAGS shell element. The CSM Testbed is described in reference 1.

This report is intended both for CSM Testbed users, who would like theoretical background

on element types before selecting them for an analysis, as well as for element researchers

who are attempting to improve existing elements or to develop entirely new formulations.
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Structural Element Processor ES5

1. GENERAL DESCRIPTION

1.1 Purpose

Processor ES5 contains the displacement-based 4-node quadrilateral shell element used

as the "workhorse" element in the STAGS code (ref. 2). This C 1 element is intended

for modeling thin shells for which transverse-shear deformation is not important. The

element employs an incompatible displacement field, which features a high-order (cubic)

bending field and a semi-lower-order (llnear/cubic) membrane field. For many problems

with regular geometry, the STAGS 410 element in ES5, called E410, provides rapid con-

vergence not possible with the same number of freedoms in an element where inter-element

compatibility is rigidly enforced. However, it does exhibit distortion sensitivity, especially

due to in-plane distortion. Sensitivity to out-of-plane distortion (i.e., warping) is largely

eliminated by the generic corotational projection operator built-in to the ES processor

shell.

The E410 is a quadrilateral shell element with 3 translational and 3 rotational freedoms

per node. This element also has "drilling" rotational stiffness, which proves to be an

advantage for problems with intersecting geometries. Hence, no suppression is required

for the drilling (i.e., 6th) degree of freedom - even for flat plates - because all 6 nodal

freedoms have stiffness.

Arbitrarily large rotations (but only small strains) may be modeled with these elements

by employing the standard nonlinear corotational utility available for all ES processors.

1.2 Background

Processor ES5 was developed by Frank Brogan of the Lockheed Palo Alto Research Lab-

oratory. The E410 element was originally developed for the STAGS code over a period

of years, and was recently transferred to the CSM Testbed, as processor ES5, under the

sponsorship of the NASA CSM Program. The E410 element originated as a plate bending

element with the QB12 formulation (ref. 3), with the later addition of the QUAF mem-

brane formulation developed by Bo Almroth and Frank Brogan of the Lockheed Palo Alto

Research Laboratory, which is based on an extension of the Ph.D. thesis by Willem (ref. 4).

1.3 Specific Element Types

Processor ES5 contains only one element type, the E410 shell element, which is equivalent

to the 410 element within the STAGS code. For quick reference, a summary of element

types within processor ES5 is presented in Table 1, and an element fact sheet is provided

in Table 2.

PRECEDING PAGE BLANK NOT FILMED



In Table 2 the following definitions apply:

NEN - number of element nodes

NIP - number of integration points

NSTR - number of stresses

NDOF - number of nodal degrees of freedom

Type

E410

Table 1. Summary of Processor ES5 Element Types

Description

4-node quadrilaterial C 1 facet shell element. This is the same element

available in the STAGS finite element code (where it is called the 410
element). It is recommended only for experienced users, as it tends to be
sensitive to in-plane distortion, and possesses a spurious mode that can
occasionally be triggered. However, in the absence of spurious modes and
significant mesh distortion, the element can be extremely accurate for thin

plate and shell problems.



Table 2. Element ES5/E410 Fact Sheet

Attribute

Element Type

Developer

Topology

NEN----4

NIP=4

NSTR--6

NDOF=6

Description

4-Node C z Facet Shell Element

F. A. Brogan, B. O. Almroth, & C. C. Rankin (LPARL)

4

z 3

Intended Use Very thin plates and shells

Variational Basis Assumed displacements (Total Potential Energy)

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx.

Strain Approximation

"_L = ('_ L , ICL ) T

Stress Approximation

_L = {nL, mL} T

Force Vectors

Stiffness Matrices

Mass Matrices

Linear/cubic u, v; Cubic w (includes drilling DOF)

da=

~ p0(_)p_(_) _ ~ p_(_)p0(_) z_ ~ p2(_,_)

_, _, _y ~ pl(z, y) -- if elt. edges not at 45 °

_,_,_ "_ P1(_,_7) --ifelt. edges at 45 °

Using constitutive relations, e.g.,

WL(_,_) = _L(_,_)ZL(_,_)

Nonlinearity

Pathologies

Recommended Use

f-_'_= _:_g:14 w# J(_g,rlg)BT(_g,r/g)_(_9,r/g)
-- T _ezt

f-:=' = Eg=]4 wg J(_g,r/g)ND(_g,r/g)f (_g,r/g)

K7 aa = _-,_=z wgJ(_g,71g)BW(_g,rlg)C(_g'71g)B(_g'_la )

iT i
--_ _)G (_ _)K _°'' = _--_4: z w_J(_,r/_)G (_,r/a)S(_a,

M_ = Es=z' w_ J(_a,yg)ND(_a,ria)ZNo(_a,rla)

M D = diag{(_zI3,_xI3),...,(_413,_413)}

Lagrange strains and/or corotation

Distortion sensitive; potential spurious modes

General-purpose application by experienced users

(a = 1,4)
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2. ELEMENT FORMULATION

2.1 Summary

The E410 element is a C 1 (slope-continuous) element based on the Kirchhoff-Love shell

hypothesis (normals stay normal, no transverse-shear deformation) with bending energy

dependent on a single transverse displacement field. The membrane energy relies on a bilin-

ear interpolation of the in-plane nodal translations and a cubic interpolation of the normal

nodal rotations. The bending energy relies on a cubic interpolation of the transverse nodal

displacements and bending rotations. The result is an element with membrane strains

that are constant along the direction of a given strain component, but vary quadratically

in the lateral direction; and with bending strains that vary linearly in both directions.

Note that the E410 element is a "flat", facet-type element. That is, all geometry is based

on a projection of the actual geometry onto a best-fit plane. This element is therefore

sensitive to warping, unless the corotational projection option is invoked when employing

CSM Testbed processor ES5. The combination of high-order bending formulation, drilling

rotational stiffness, and the generic corotational facility allows for accurate and efficient

computation of arbitrarily large rotation, moderate strain response -- provided that in-

plane element distortion is only mild (i.e., the projected element shape should be kept

near-rectangular).

2.2 Variational Basis

The E410 element can be derived by starting with the principle of minimum total potential

energy, wherein the displacements are the only independently approximated field.

2.2.1 Continuum Equations

The principle of minimum total potential energy states that:

/_IIT(u) = 0 (1)

where, for linear elastic analysis, IIT is the total potential energy functional:

1

in which u = u(x) is the displacement vector, x is the position vector, fb and fa are body

and surface force vectors, C = C(x) is the constitutive matrix, and the strain operator,

¢(u), is defined for linear analysis by:

1 (Vu + (Vu) T) (3)=
which in vector notation and Cartesian components is just:

= ( 11 (4)
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2.2.2 Shell Assumptions

The geometry of a general shell is illustrated in Figure 1; the E410 dement formulation,

however, is based upon the restriction of the shell to a fiat plate, which may be thought of

as a facet model of the shell. The following assumptions are introduced in the continuum

variational equations to obtain corresponding "shell" variational equations -- and hence

reduce the above volume integrals to surface integrals:

1) Shell normals remain straight and normal (zero transverse-shear strain).

2) The shdl normal stress can be neglected.

The displacement field depends on the position of the reference surface plus the normal

distance z times the derivatives of the transverse displacement, i.e.,

=

=
(5)

where z and y are the in-plane local-Cartesian coordinates along the reference surface

(defined by z = 0); u, v, w are the displacements in the z, y, z directions of a point located

a distance z off (i.e., normal to) the reference surface; u, v,w are the z, y, z-directed dis-

placement components of a corresponding point on the reference surface; and @,_ and _,_

are the derivative of _" with respect to z and y, respectively.
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Note that _,_ and _,_ are associated with the deformed slopes of the reference surface,

which are related to engineering rotations as follows:

0_(x,y) = _(x,y) (6)

These engineering rotations will be employed, subsequently, as element nodal rotational

freedoms, with an additional drilling rotational freedom defined within the interior as

follows:
1

ez(z,y) = _(% -_,_) (7)

It is convenient to re-express equation (5) using the following vector notation:

where

[u(_,y,z) = _(_,y) + zu'(_,y)[ (8)

U = (it V W} T

U I = (--w,_ --W,y 0}7

(9)

Substituting equation (8) into equation (2) yields the following "shell" total potential

energy functional:

1 IIIT(_) = _ fS -ff(_)T _(_)dS - ( fs fiT_b+_S)dS+ fL fiT_t dL) (10)

where the superposed tildes represent shell resultant quantities, defined as follows:

in which

= {fi u'} T = shell displacement vector (11a)

= Z_ = reduced strain vector (llb)

C, = f Z T C Zdz = resultant constitutive matrix (llc)
dz
f

o" -- ./. zT _'dz -- stress resultant vector (lld)

f = { f_ f_ dz, L fb z dz }T = shell body force (11e)

?° = { f_ f° dz , L f'zdz } T = shellsurfaceforce (11f)

_t = {f_ f'dz , L f'zdz} T = sheUlineload (llg)

Z(z) = [I_ zI3] (12)



Note that the hats above _', _ and C denote enforcement of both the zero transverse-shear

strain assumption, and the zero normal stress assumption, i.e.,

ez_ = e_ = _zz = 0 (13)

so that the dimension of these arrays has been reduced from 6 to 3, i.e.,

... = }T (14){ezz e_ 2ezv} T and _ = {_rzz _r_v az_

and

where

£zz _yy _zy

= (15)
a_ \C13 @23 C33

cL (i,j = 1: 3) (16)

The normal strain is then always recoverable using:

--_ C6j ej
_zz = 666

j=l

(17)

where subscripts i,j = 1,2,3,6 denote coefficients relating stress/strain components

zz, yy, zy and zz, respectively.



Shell Strain Measures

The shell resultant strain measures, _', are defined in terms of displacements expressed in
the local-Cartesian basis as follows:

_, = {_} {membranestrains} (18)t¢ = bending strains

where

m

E =

- .

02@

(19)

Note that the continuum strains, excluding transverse shear and normal components, can

be computed from the above resultant strains using equation (11b), i.e.,

= _ + z t0 (20)

Shell Stress Resultants

The shell stress resultants are defined, from equation (11d), as follows:

_ = {n} { membrane stress resultants (force/length) }m = bending stress resultants (moment/length)

where

f__ _" dz = n_ _rz_ dzn

Jz ny 6ryy

m , zdz

(21)

(22)



2.3 Discrete Equations

The finite element shell equations are obtained from equation (10) by introducing approx-

imations for the geometry (reference surface coordinates) and displacement field within
each element of the form:

where

X(_,r/) = NO(_,r/)X e (23a)

_(_,r/) = ND(_,r/)d e (23b)

x_ and d* = d_ (24)
x'= x_ d;

x_ a_

are the expanded element nodal coordinate and nodal displacement vectors, respectively,

and _,r/ are natural surface coordinates ranging between -1 and +1 within the element.

With the above discrete approximations (defined in detail in the following sections), the

resultant strains can be computed using:

_'(_,r/) = _(ND(_,7/)d e)

=- B(_, r/) d e

(25)

where B is the element strain-displacement matrix, defined by substituting the element

displacement approximations (eq. (23b)) into the strain-displacement relations (eqs. (18)-

(19)).

The discrete form of the variational functional (eq. (10)) thus becomes:

Nel

HT = E H,_ (26)

where the script e denotes an individual element, Nel is the total number of elements, and

the element total potential energy may be expressed as:

In equation (27) K'_ "tt is the element material (or linear) stiffness matrix, and _t is the

element external force vector, defined as follows:

f:o,, f:-., f:,-.

(28)

I0



where TEc is the block-diagonal transformation matrix relating the computational basis

at each element node to the element local-Cartesian basis. Specific equation systems em-

anating from equations (26)-(27), and their generalizations, are described in the following

sections.

2.3.1 Linear Static Equations

The discrete equations for linear statics are obtained by taking the first variation of equa-

tion (26) and setting it equal to zero, i.e.,

K '_"tl d = fe_t (29)

where K '_'tz and fe_t are the assembled versions of the element material stiffness and

external force vector (eq. (28)), and d is the system displacement vector, composed of the

union of all element nodal displacement vectors.

2.3.2 Linear Dynamic Equations

For linear dynamics, an inertial term is added to the left-hand side of equation (29) - using

Hamilton's principle - resulting in:

Mci + KmatZd = fc_t (30)

where M is the structure mass matrix, assembled from the element mass matrices, Me,

which are defined in Section 2.11.

2.3.3 Linear Eigenproblems

For linear vibration analysis, the right-hand-side of equation (30) becomes zero and we

have the eigenproblem:

(Kraft' + )_M)d;_ = 0 (31)

where the eigenvalue, )_, is the natural frequency squared, and d_ is the corresponding

vibration mode vector.

For linear stability, or buckling analysis, M is replaced with the geometric stiffness matrix:

(K'_tz + AKge°'_(er0) d_ = 0 (32)

where the eigenvalue, )_, is the buckling pre-stress load multiplier, (o'0) is the buckling pre-

stress field, dx is the corresponding buckling mode, and K ge°m is the geometric stiffness

matrix, defined in Section 2.10.

11



2.4 Element Topology

The topology of the E410 shell element in processor ES5 is shown in Figure 2.

Each node possesses the 6 displacement degrees of freedom:

where:

(33)

/ {0}ua = va and O, = 0_, (34)

are the translation and rotation components at element node a, expressed in the fixed

element local z, y, z coordinate system (in which z is the shell-facet normal direction).

Each element also stores the 6 resultant stress and/or strain components defined in equa-

tions (19) and (21) at each of the 2 by 2 Gauss integration points illustrated in Figure
2.

12
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Figure 2. Topology of ESS/E410 Shell Element
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2.5 Geometric Approximations

The element geometry, embodied in equation (23a), is approximated within the element by

interpolating reference surface coordinates from corresponding projected (flat-facet) nodal

quantities. To accomplish a best-fit, a plane is chosen according to the prescription de-

scribed in Chapter 3 of reference 5 such that nodes 1 and 3 lie in the plane, and nodes 2

and 4 lie an equal distance away on the same side (see Figure 2). Actual nodal positions

are projected onto the plane and become the x= vectors used in equation (23a). Inte-

rior reference surface coordinates are obtained using bilinear Lagrange interpolation of the

projected nodal coordinate vectors, i.e.,

4

= (35)
a---_l

in which _,,7 are the natural coordinates of the quadrilateral element (see Figure 2), and

N,(_,7/) is the Lagrange interpolating polynomial - or shape function - associated with
element node a.

The above expression may be recast in the matrix notation of equation (23a) as follows:

x(_,,/) = NG(_,T/)x" (36)

where

xff, n) = { }

, e ,

x 1

(37)

f _

Xe ____ _Za_ (38)xe __ _

x_ ( JY=

and

= [N1(_,,7)I2 N2(_,,7)I2 N3(_,,/)I2 N4(_,,/)I2]J (39)

14



2.6 Displacement Approximations

The E410 element displacement field may be divided into two groups, as follows:

1) The transverse - _ - field, which is interpolated from nodal freedoms {wa, 0_a, 0_}.

From this field the bending curvatures t_, au, t:_u are computed for the complete

description of the bending response. For this purpose, the bending interpolations

suggested by Melosh (ref. 3) are used, with a special modification made to avoid

singularities (when adjacent element sides form an angle of 45 degrees).

2) The in-plane - _',_ - field, which is interpolated from nodal freedoms {_,,_,, 0z_,}.

From this field the membrane strains, e,,%,e,_ are computed for the complete

description of the membrane response. For this purpose, a modified version of

the membrane interpolations suggested by Willem (ref. 4) is used, which employs

the drilling freedoms 0z_, in such a way that compatibility between in-plane and

transverse displacements is achieved when two elements intersect at 90 degrees (i.e.,

box-like structures).

2.6.1 Bending Displacement Field

The approximation of the E410 bending, or transverse, displacement field may be expressed

as follows:

UB(z,y) = NB(z,y) d B (40)

where

(41)

and

df dr= 0_ (42)

Ova

dB4,

The bending displacement interpolation matrix, N B, may be partitioned into nodal blocks:

NB= [Nf N B N B N B] (43)

with

w---_ 0_ 0_

NB(_,T/) W _,. 0.. 0,. (44)

15



The bending interpolation functions, N_(z, y), are constructed from a general polynomial

expansion complete through third order, with the addition of the fourth order terms z3y

and zy s, as follows:

I w O0 10 O1 ll 13 3 I

|

Nia(Z,y ) = Cia + CiaZ + Clay + CiaZY + ... + CiaZy I (45)

kl depend only on the element geometry. The super-where the 12 unknown coefficients cia

scripts k, I label the z and y polynomial powers, respectively, while the subscript a labels

the node, and the subscript i labels freedoms W, 0_, 09 respectively. Thus, there are 12 sets

of 12 coefficients, or one interpolation function for each nodal bending freedom.

For N_(z,y) to describe a true interpolation function, its value at the nodes must be

zero for all freedoms except ia, where it must equal 1. This provides each of the linear

equations for the 12 unknown c kl coefficients. The rotational freedoms are matched to the

derivatives Ni_,_ or N_,y at the nodes, as required by linear theory, i.e.,

O_a = w---'_,u (46)
O_a = --W'--_,_

The above set of 12 linear equations is solved only once per element, as soon as the

initial element geometry is known (there is actually one factorization followed by solution

for 12 right-hand sides). It can be shown that the resulting displacement field possesses

the correct rigid-body modes, and, for rectangular and parallelogram shapes, correctly

describes a general state of constant curvature (see, e.g., Melosh (ref. 3)).

Note that once _B(z,y) is known from equation (40), the corresponding function of (_, r/)

can be obtained by making the simple substitution:

us( ,u) = = (47)

where x(_,r/) is obtained using equation (35). This change of variables is useful when

performing numerical integration over the element domain, since numerical quadrature

rules are typically expressed in terms of natural coordinates.

16



Special Treatment of Bending Displacement Patholoqies

The presence of the zy _ and z3y terms in the approximation of the bending displacement

field introduces the possibility of a mechanism (i.e., spurious mode) in certain instances,

particularly where two free edges intersect. In the STAGS code, an optional penalty term

is added to suppress this behavior; however, in the CSM Testbed the penalty option has

not been implemented.*

Another pathology - in very rare cases - is that the system of equations for the coefficients

in equation (45) becomes singular when two element edges intersect at exactly 45 degrees.

This makes it impossible to construct the bending interpolation functions. A satisfactory

way around this is to replace the polynomial expansion given in equation (45) in terms

of z, y, with an identical expansion in terms of _, r/- the natural coordinates. Since the

natural coordinates refer to a "parent" element that is always square, the singularity never

arises. This leads to new interpolation functions, N_(_, r/), which have been given explicitly

by Melosh (ref. 3) - as shown in Table 3 - so that solution of a 12 × 12 equation system

is avoided altogether. However, the trade-off is that these interpolation functions must be

doubly differentiated with respect to z, y to obtain the bending curvatures, which requires

a somewhat complicated Jacobian transformation (see Section 2.7.2 for details).

Table 3. Explicit Natural-Coordinate Bending Shape Functions

N_,W(_,rl) [ [(_,,_ + 1)(_/,_T/+ 1)(2 + _a_ + T/,,T/-- _2 _ T/2)]

' + - + 1)]

N_.,. ({,7/)w il [r/_( 7/aT/+ 1)_( _/J/ - 1)({_{ + 1)]

* Note that this mechanism is usually alleviated in nonlinear analysis by the corotational

projection operator.

17



2.6.2 Membrane Displacement Field

The approximation of the E410 membrane, or in-plane, displacement field may be expressed
as follows:

_M(_,r/) = NM(_,y) d M (48)

where

and

(49)

a M =

, ¸

dV

d M

, d M

{'}, with d M = Y,, (50)

Oza

The membrane displacement interpolation matrix, N M, may be partitioned into nodal
blocks as follows:

N M = [N M N M N M N M] (51)

where

U"-a Va O za

o,. (52)
N _ N _

To obtain the membrane interpolation functions, N_, and N_,, where i = 1,2, 3 corre-

sponds to u, v, 0z respectively, we begin with the basic bilinear displacement field:

4

i=1

4 (53)

i=1

where the interpolation functions N.(_, y) are the standard bilinear Lagrange functions:

1

N,,(_,y) = _-(1 + _/_,,)(1 + y/y.) (54)

Here, _, y are the natural coordinates of an arbitrary point in the element interior, and

_a,_Ta are the values of _,y at element node a, which are given in Table 4.

18



Table 4. Surface Coordinates at Nodes

Node (a)

1

2

3

4

-1

1

1

-1

T]a

-1

-1

1

1

It can be seen that the above bilinear interpolation would properly interpolate the (_', 7)

field, were it not for the requirement that comes from incorporating the 0za drilling free-

doms. The drilling freedom can be viewed as a simultaneous (rigid) rotation of any two

element edges that intersect at a node, as shown in Figure 3.

19
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For small rotations, a suitable definition of an incremental rotation vector, AS, is:

r×Ar

AO -- ir12 (55)

where r is an arbitrary position vector, and Ar is the incremental displacement of that

vector under the rigld-body rotation A0. This definition is consistent with the well-known

relation from classical dynamics:*

Ar =A0xr (56)

which, when substituted into the right-hand side of equation (55), verifies that expression.

For flat elements like E410, the z component of equation (55), with 0. _ A0z, translates
into:

0z = x_,_-y,_,_
z2 (57)

,_ + y,_

for the rotation of an element edge corresponding to a constant T/line; and into:

= z,,Tv,. - y,nu,,7 (58)
_2 + y2,,7,7

for the rotation of an element edge corresponding to a constant _ line (see Figure 3). For

any two intersecting element edges, both of the above equations must be simultaneously

satisfied, yielding a total of 8 conditions (2 for each node). We therefore require 8 additional

independent interpolation functions, all of which contribute zero _ and Y at nodes (to

satisfy the basic interpolation condition), but possess nonzero derivatives at nodes for use

in equations (57)-(58). The following set of functions serves this purpose:

1

= _(2+3_o__3_o)(V3 +_2_o____o)

1 3
= _-_(_ +_2_--_--_)(2+3_T/_--T/3r/_)

(59)

for interpolating _ and Y displacement fields, respectively. Note that unlike standard

shape functions, the edge rotation conditions equations (57)-(58) couple the _ and Y fields

together, so that Y displacements in the interior of the dement arise from _ nodal dis-

placements, and vice versa.

* The notation used in classical dynamics is typically v = oJ × r, where v is the translational

velocity (corr. to Ar) and oJ is the angular velocity (corr. to A0).

21



The complete set of membrane interpolation functions may be expressed as follows:

4

a----1

4

N:.(_,.) = _._(_,_1
a-----|

4

am1

4

a----]

4

a----:l

4

a----1

(60)

where the position of these functions in the membrane interpolation matrix, N M, was

defined in equation (52).

The above set of 24 coefficients, _-_'_,,and _a (i = 1 : 3, a = 1 : 4), are computed by

evaluating the 8 drilling equations (57)-(58) for each of the following 3 sets of interpolation
conditions:

1) _'(_,,,_/a) = _,,, _'(_Q,r/_) = 0, 0_(_,,,r/a) = 0

2) _(_a,T/_) = 0, _(_,,/_) = _a, 0z(_,r/_) = 0 (61)

3) _(_a,¢.)= 0, _(_o,.o)= 0, ez(_.,.a) = ezo

where _',_ = 1, Y., = 1, _ = 1 for each node a in turn. This amounts to solving 3

independent 8 × 8 equation systems - each corresponding to four pairs of interpolation

functions: N_,N_, with i fixed at 1,2 or 3 denoting u,v or @, respectively. As in the

case of the bending interpolation functions, this solution for the membrane interpolation

functions is performed only once per element at the beginning of the analysis.

As an aside, note that the bilinear Lagrange interpolation functions, Na(_,r/), already
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satisfy these conditions, i.e.,

4

=
b=l

= 6ab_b = u'--_

b=l

(62)

2.8.3 Combined Displacement Field

The complete displacement field for the E410 element may be assembled from the mem-

brane and bending displacement fields, equations (52) and (44) respectively, as follows:

= Z No\ 0 0 0
@(¢,r/) :=_ 0 0 N__. N _° N _°0_a 0_

_(_,.) N_ (_,,0

i

Oza Ua

N u ) va

Oza

N v wa

0 0::

• Oya

, OZ.a .

d.
i

(63)

where the N_ (bending) interpolation functions were defined in equation (45), and the

N_ and N_'a (membrane) interpolation functions were defined in equation (60).

--D
Note that an expanded matrix, N , is needed to interpolate the expanded displacement

vector, _(_,r/), which appears in equations (10) and (lla). The expanded interpolation

matrix is defined as follows:

_a _'_ w'---_ O:a O_a O:a

,_. N,,. 0 0 0 o,.

_(_, 7/) _ _ No\ 0 0 0 N _8x a

_(_,7/) E 0 N w N _' g _' 0"-- _6 8_a 0lit,

-:,z(_,.) a=l [ 0 0 -N w N w N w

__,,(_,rl) 0 -N w N w 0w,,,y - o.,.,y -No.:,y

VI(_,,) - '_Na(_,,O

w

' '{$a

'Ua

Wa

Oza

Ova

) , O_a

d.

(64)

The above matrix is used to construct the element external force vector (see Section 2.9.2).
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2.7 Strain Approximations

The E410 element strains are obtained at the standard 2 × 2 Gauss integration points by

substituting the displacement approximations given above into the shell strain-displacement

relations (eqs. (19)-(20)). This requires differentiation of equation (63) and leads to the

conventional strain-displacement matrix, B, introduced in equation (25).

As the membrane and bending displacement fields are separable (for geometrically linear

analysis), i.e., employing different interpolation functions and involving different nodal de-

grees of freedom, we may consider the corresponding partitions of the B matrix separately.

We shall denote the compressed partitions of B with a superposed hat (e.g., B_ and _t¢)

and the expanded partitions - corresponding to the full set of element nodal displacement
freedoms - without the hat.

2.7'.1 Membrane Strains

The membrane strain approximation is represented as follows:

_-(_,_) = _(_,,7) = v,,(_,,7) = fi_(_,n)d _

_=,(_,_) %(_, _) + v,=(_,_)

(65)

^_"
where B is the membrane strain-displacement matrix, obtained by substituting equation

^E

(48) into equation (19). In terms of nodal blocks, B is defined as follows:

(66)

where for a given node a:

(

_'_ _ O:a

U:\,: N:.,: N:Oza IZ

?3 V N t_

N,_" ,, + N,_.,: N_",, + N_,_,: N: + N"Oza ,y Oza ,z

(67)

Note that since the membrane displacement interpolation functions depend explicitly on

_, 7/, the Jacobian matrix must be used to obtain the Cartesian z, y derivatives appearing
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in equation (67). This transformation is performed asfollows:

u1

0N;. if,,7)
Oy '

Oz Ox -T

0

J

0N2(_,,7)
07/

(68)

where Ni'*_ represents any of the membrane displacement interpolation functions in equa-

tion (60), and J is the Jacobian matrix, computed as follows:

Z i [_1Yl

c_NI (_, ,1)
o_

0N'(_'")lo,. (69)

where the N='s are the standard bilinear Lagrange interpolation functions, which are used

to interpolate the element geometry (see Section 2.5).

2.7.2 Bending Strains

The bending strain approximation may be represented as follows:

t¢(_,?) = Ic_(_,'/) = - W, yv(_,'/) = fit¢(_,'/) dB

Ic=_(¢,¢) - 2_=_(_,¢)

(70)

where _t¢ is the bending strain-displacement matrix, obtained by substituting equation

(40) into equation (19). In terms of nodal blocks, B is defined as follows:

^to

= B2 B3 B, ] (71)

where for a given node a:

^B

B= (,_,r/)

J'_z:

w-'-_ 0=_ Or=

/
- N" N _ N '_

- N,_,y_ - N '_ - N _'0=,= ,yy Oy= ,yy

-- 2Nwa,zy - 21v=..=,,-

(72)
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Recall from Section 2.6.1 that there are two ways of computin_l the bending interpolation

functions, N_ - either as a function of z, y (using the solution of a 12 × 12 equation sys-

tem) or explicitly as a function of _, r/. The latter approach is used only when the equation

system for the former approach becomes singular - e.g., when two element edges intersect

at 45 degrees. When the bending displacement interpolation functions are generated as a

function of z, y (approach 1), the second derivatives appearing in equation (72) are imme-

diately available by differentiation. However, when the bending displacement interpolation

functions are generated as a function of _, 77 (approach 2), the chain rule must be used to

convert second derivatives with respect to _, 7/ to corresponding second derivatives with

respect to z, y. This chain-rule transformation may be expressed in matrix form as follows:

][02-m(z,Y),] = j-T [r02N(f,,#)l _ _b,_ J-'
L _2 _=IL oe _ Dk

Oe

(73)

where N represents any of the interpolation functions, N/_, in equation (72), and its

second-derivative matrices are given in the Cartesian and natural systems as:

0 2N 0 _N

02N 02N

in which x represents {z,y} and _ represents {_,r/}. The vector b is just the Cartesian

gradient of N, i.e.,

{}b, -_- = j-r _ (75)
b = =ON ON

b_ -_ -Of

where the Jacobian matrix, J, was defined in equation (69). Finally, the matrix Dk is
defined as follows:

Dk = [_ -_J (76)

where the partials in equation (76) can be computed by differentiating equation (35).

Equation (73) is derived by differentiating the Jacobian transformation (eq. (68)) and

using the chain rule. It is interesting that an incorrect version of this transformation was
OaN[e

employed by both Melosh (ref. 3) and Zienkiewicz (ref. 6). They interpreted -_-_ tg, r/) as

a second rank tensor, and hence used the standard tensor transformation:

02N j-T 02N j-1

_-_ (z,Y) = 0,¢2(,','D (77)
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8_N /t 82N _
However, _-_-__, _) is not a second rank tensor - only the Cartesian version, _-_rlz,y), is.

Hence, they omitted the term involving Dk in equation (73), which caused the element to

lock and, in turn, to be abandoned by these authors. The replacement of 82N in equation

(77) by 8'N'
-_ , as in equation (73), eliminates such difficulties.*

In processor ES5, an attempt is always made first to solve for the z, y bending interpolation

functions (eq. (45)). However, if the corresponding 12 × 12 equation system is singular,

a switch to the alternate _, T/formulation is employed automatically - using equation (73)

and the explicit _, 7/interpolation functions.

2.7.3 Combined Strain-Displacement (B) Matrix

The complete B matrix is constructed by assembling the components of B _ and B t¢ into

the appropriate slots, as follows:

{ }
= = ¢ (78)

where in terms of nodal blocks:

B = [B] B2 Ba B4] (79)

and each nodal block is defined as follows:

Numerical experiments indicate that the =, y bending interpolation functions are well behaved

and exhibit little distortion sensitivity until the element edges are within 45 o -4-1°, at which

point the singularity is detected. Then, with the alternate _,t/ interpolation functions, a

slight degradation of accuracy is noted at 45 °. Note that we do not use the explicit _,_/

formulation outside of this singular range, since these functions mildly violate the constant-

curvature patch test for elements that deviate from a strict parallelogram shape - which

explains the slight accuracy degradation just noted. However, in the original _, _7formulation

by Melosh (ref. 3), rigid-body invariance was also violated, which caused a severe (i.e.,

"locking") type of degradation.
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Kz

Ky

Kzy

B,,(_, T/) --

_',, v-_ w--_ 0=,, Or,, 0_,,

" 0 0 0N_. ,_ N" N"Va. _Z 8Za 9_

N_. ,v N" 0 0 0 N"va ,y 8z a _Y

'o U 1)

N,_" ,, + N,_.,. N'_..,v + N_.,= 0 0 0 N$..,, + N$.o,_

0 0 N w N _ N _ 0
-- "tOa _ -- _ma t Z'_ -- _ya t ZZ

0 0 - N w _' N _ 0
la= ,yy -- No=a ,yy - oya ,yy

0 0 - 2N_.,_,v - 2N_.,. v - 2N_' ,=v 0

(80)

It can be seen from the above derivations that the bending strains vary at most linearly

along any direction within the element, and the membrane strains have a more complicated

variation within the element, as shown in Table 5.

Table 5. Strain Variation within the E410 Element

Strain

Component

Memb. "_=

Bend. _.

_y

Element Type

E410

Poff) × P2(_)

p_(_) ×po(_)

P_(_,_)

pl(z,y) (or P1(_,_)*)

In Table 5, Pi denotes a polynomial of degree i in the specified coordinate z, y or _, 77; and

the asterisk denotes the alternate _, 77option which is used for the bending strain field only

when the coefficient matrix for the constants, cia,kl in equation (45) is singular - i.e., when

the element shape is distorted by approximately 45 degrees at any node.
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2.8 Stress Approximations

Since the E410 element within processor ES5 assumes displacements and strains, stresses

are computed directly in terms of strains using the constitutive relations. For linear anal-

ysis, this amounts to:

_(,_,y) = C(,_,'r/)_'(,_,_/) (81)

where ((, r/) represents an arbitrary element integration point.

2.9 Force Vectors

All element force vectors are constructed using 2 × 2 Gauss integration.

2.9.1 Internal Force Vector

The element internal force vector is defined as:

feint = _S BT _rdS

4

g=l

Note that for linear analysis, the above definition is equivalent to K_ atl de.

(82)

2.9.2 External Force Vector

= flinef_t fbody + f;_,,'f+ -e

where the element body force vector is defined as:

feb°dy IS -- T --b
= N D f dS

4

EwaJ(_g,Vg) ND(_g,,g)f (_g,,g
g----I

the element surface force vector is defined as:

f:urf = NDf dS

4

g=l

(83)

(84)

(85)
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and the element line force vector is defined as:

feline / -- T --t= N D f dL
JL

(86)

g=l

2.10 Stiffness Matrices

The tangent stiffness matrix, defined as K : 8_-_, is the sum of three contributions, i.e.,

K : K matt + K ge°rn -4- K t°ad (87)

which are described in the following sections. All contributions are obtained using 2 x 2

Gauss numerical integration.

2.10.1 Material Stiffness Matrix

The element material stiffness matrix is defined as:

K'2_a = fs BT _ B dS

, (88)
Z w, J(_,, r/a) (BT(_,, r/a) e(_a, r/a) B(_a, r/,))
9=1

where J is the reference surface Jacobian determinant, and all other quantities have been

defined in previous sections.

2.10.2 Geometric Stiffness Matrix

The element geometric stiffness matrix is approximated by:

K geom

4

Zwaj[n=(g=,.Tg,_ ,. + gv,.Tgv,. + gw.Tg_,.)+

nu(g_,,Tg_,,, + g.,,Tg.,,

n=y(g=.Tg=, + g.,.Tg.,

" _ y T lt atn_(g, g + g,,,,rg,,,.

g=l

-I- gW,, T gw,,) +

+ g_,.Tgw,) T

-I- gw,Tgw,)]

(89)

where n=,n_,n=_ are membrane stress resultants defined in equation (21). The gradient-

displacement row-matrix g'_.'i interpolates the displacement derivatives from the element
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nodal displacement freedoms, i.e.,

4 jl,t i
Ou__.i_i= g""'i d e = E g" d_ (90)
Ozj

where d E is the displacement freedom vector at element node a, expressed in the element

Cartesian basis. For example, g_'" in terms of interpolation functions defined earlier takes

the form:

_,, _,, w---_ O_a 0_,, 0_,,

= NL, No0 0 0 0

The other gradient-displacement matrices have a similar form. Derivatives with respect

to z and V coordinates for the membrane interpolation functions are treated as in the

computation of strain, requiring the inverse Jacobian (see equation (68)).

2.10.3 Load Stiffness Matrix

The load stiffness matrix is defined as K l°ad -: of__. While this matrix has been imple-
all_

mented in processor ES5, the corresponding theoretical documentation is in preparation.

2.11 Mass Matrices

2.11.1 Consistent Mass Matrix

The element consistent mass matrix is defined as:

Me
fS --T

= N D 2" I_TD dS

4

9=1

(92)

where I_D is the expanded displacement interpolation matrix (eq. (64)), and the integrated

density matrix, 2" is defined as foIIows:

_ w -w,z --w,_

/00 0/0 p 0 0 -pzI'

Z = J _ 0 0 0 0 dz (93)
Jz -_,_ -pz 0 0 pz _ 0

--'w,V 0 --pz 0 0 pz 2

where p(z,y, z) is the mass density.
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Note: The above consistent mass matriz formulation has not yet been implemented in

processor ESS.

2.11.2 Lumped (Diagonal) Mass Matrix

Note: The diagonal mass matriz has not yet been implemented in processor ES5. The

formulation is similar to that found in processor ES1 (see reference 7).

2.12 Element Nonlinearity

For nonlinear problems, the discrete system of equations given in equation (30) generalizes

to (ignoring structural damping and higher-order inertial effects):

M_i + fi"t(d) = fe't(d,)_) (94)

where fi,_t and fe-t are now nonlinear vector operators. This equation system is then

linearized, yielding the following linear equation system to be solved at each iteration of a

nonlinear analysis:

M_d + K6d = f*'t(d,A)- fi"t(d) (95)

where d is the displacement vector connecting the current (reference) configuration to the

initial configuration, _d is the iterative change in the displacement vector (to be computed),

and K is the tangent stiffness matrix at either the current configuration (for True-Newton

iteration) or some previous configuration (for Modified-Newton iteration).

The nonlinear ES5 element contributions to M, K, f_t and fiat have the same form as

the linear contributions, with the following exceptions:

1) The stress resultant array, _, which appears explicitly in both fiat and in K ge°ra is

computed using the Green-Lagrange strain tensor E defined as follows:

1 0u 0u T 0u T0u] (96)+ +
where X are the coordinates in the undeformed configuration. To simplify the

formulation, the nonlinear terms in u are added only to the shell membrane strains.

Thus, in geometrically nonlinear analysis, the linear membrane strains, g, defined

in previous sections are replaced with the following definition:

-_ ,,.....__ -_ _[_ -_N L (97)

where

gNL _ l(O-ff'_TO-ff (98)
- 2\OX/ OX
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and _ and X are reference-surfacedisplacementsand coordinates, respectively. In
vector notation and local (element) Cartesiancomponents,this nonlinear contribu-
tion to the shell membrane strains becomes:

-_N L -- _N L =

-NL
_XY

1 --2

+ + 1

(_,X_, Y qu _,XV,y _- W,XW,Y )

(99)

where X,Y denote the undeformed coordinates in the initial element Cartesian

frame, and u,v,w are the total displacements expressed in this same initial basis.

The displacement derivatives are computed from the gradients defined previously

in Section 2.10.2:

4 + )(e,.) ( (100)= g,, (_,_7) i,j = I: 2 =_ X,Y
a=l k

Once -gNL has been added to the linear strains, as in equation (97), the stress

resultants can then be computed from the total strains in the same way as during

geometrically linear analysis; e.g., for linear-elastic materials:

= C3_" (101)

2) When the strain-displacement relations become nonlinear, the B matrix appearing

in the element internal force and material stiffness arrays, f_/,_t and K_ _tl, also has

to be modified. For nonlinear analysis, the B matrix represents an incremental

relation between interior strains and nodal displacements, i.e.,

b'_(_,r/) = B(_,rl;_)_d _ (102)

where

S_ (103)

58y_

, 50z_ ,

are the nodal displacement increments at node a, and _ is the total displacement

vector in the interior of the element. As in the case of total strain calculation, the

nonlinear contributions to the incremental strains are added only to the membrane

components. Thus we replace the linear membrane strain increments as follows:

_'_ e---- _-_ -_- _-_N L (104)

33



where
K,xfK, x + _,xl[_,x + _,x_,x

_-_N L = U,Y _,Y -4- _,Y _V,y -}- W,y _W,Y (105)

_,x_,Y + _,Y_,x + _,xg_,Y

+ _,y6_,x + _,x6_,y + _,Yg_,x

Substituting the displacement approximations into the above equation leads to the

corresponding nonlinear contribution to the B matrix; i.e., we replace:

B _ +--- B _ + B _'¢L (106)

where

B_Nr (_, T/) =

u'_ _ ,, w-"_ Ox ,, Oy,, Oz ,,

6_x ( _,x N_o,, _,x N:o ,_ _,x N_. ,_ _.x N _' --
' w,xNZ.., + F, x N_z.,x

_'_y

_'_ XY

_,v N_" .y _,y N_,_.y _,y N_'_ .y _,y N_'x.,r _,y N_r., r _,y No_z,,r :_

+e, yN_,,y +Y,yN:.,y +e,yN$z,,_:

_,x N_.,y _,x N"_.,y
+g, yN._",,, +<YN:o,x
+_,xN_.,y +_,xN_.,r

+_,yN_.,_ +_,rN_,.x

\

_xN:o y
+w,yNW.,x

K,xN_z,,,r

+u, y N_z=,x.

+_,x N._.,_
NV

"_-_,Y Oz.,x!

(107) _

Note that the nonlinear membrane B matrix now couples all of the element freedoms,

and also depends on the nodal displacements through the displacement derivatives,

which are computed using equation (100).

s) All of the element integrals, e.g., for stiffness matrices and force vectors, are carried

out over the initial (undeformed) element domain. The effect of large rotations is

accounted for using -gNL and B _r , defined above.

4) For very large rotations, the corotational facility built-in to the generic element

processor shell (ES) may be used. In this case the bulk rigid body motion of each

element is first "subtracted" from the overall motion before computing K,, f_,_t,

and _(_'). The main effect of this adjustment is to increase the accuracy of the

nonlinear strain-displacement relations (eq. (97)), since the nonlinear terms in the

Green-Lagrange strain tensor, i.e., -gNL, become small after the element's rigid

body motion has been subtracted; and the accuracy continues to increase as the
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4)

shell element mesh is refined. In fact, with the corotational option on, it is even

possible to solve nonlinear problems without using any other element nonlinearity

(albeit with a lower order of accuracy). See reference 5 for details.

ce=t is a nonlinear function of the displacementThe element external force vector, -e ,

vector, de, only if live (e.g., hydrostatic) loads are present. For displacement-

independent (i.e., dead) loads, the external force vector is usually expressible as:

= f (lo8)

where _ezt is a fixed base load vector, and )_ is the current load factor. In this

case, equation (85) is evaluated only once (initially), and scaled by )_ as the analysis

progresses.
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